Self-Assessment for Grade 10 Applied Math (MFM2P)

Students who are registered for Grade 10 Applied Math (MFM2P) may benefit from a self evaluation and review of the following expectations from Grade 9 Applied Math (MFM1P).

The questions in this self-assessment reflect some of the key ideas learned in prerequisite courses. They do not represent the problem solving approach or the rich experience that students would be exposed to in a classroom. The intention is for students to revisit some key concepts and, if needed, access review materials in an informal environment at a pace that is comfortable for the student.

Concept(s)	Sample Question	ble Question How comfortable do you feel with this concept?			
I can add and subtract polynomials	1. Simplify: a. $(1-7h) + (-7h-1)$ b. $(5g+3) + (2g+4)$ c. $4xy - y^2 - 3x^2 + 2xy - x - 3y^2$	Very comfortable	Adding and Subtracting Polynomials		

I can multiply a single term by a polynomial	2. Expand and simplify: $2x(x^2+10x-5) - 3(4x+3)$		Very comfortable Somewhat comfortable Not at all comfortable	<u>Multiplying a</u> <u>Polynomial by a</u> <u>Monomial</u>
I can solve equations using a variety of strategies	3. Solve for the unknown: a. $\frac{x}{-6} = 3$ a. $\frac{x}{-6} = \frac{11}{20}$ b. $\frac{45}{45} = \frac{11}{20}$ c. $2y + 7 = 21$ d. $12 - 2x = -7x - 1$		Very comfortable Somewhat comfortable Not at all comfortable	Solving One- and Two-Step Equations Solving Multi-Step Linear Equations

I can construct a table of values for a linear relationship	4. A student is p the table to sho newspapers.	oaid 23¢ for w their earn	each newspaper she delivers. Complete ings from delivering 25 to 100			Very comfortable	Intro to Linear Relations Application Problem
	Number of Newspapers	Earnings (\$)		(i) €		Somewhat comfortable	
	25			د:	_	Not at all	
	50			Å.	ш	comfortable	
	75						
	100						
I can construct a graph for a linear relationship	5. The following cost and numbe	is a table the rot topping	nat represents the relationship between s on a pizza.			Very comfortable	Intro to Linear Relations Part 2
I can determine	Number of toppings	Cost (\$)				Somewhat comfortable	
how a graph, equation and table of values would	0	13.00		(ii)	_	Not at all	
	1	14.50		Å.	Ц	comfortable	
of change and/or	2	16.00					
initial value changes	3	17.50					

	 a. Describe, in words, how this pizza store determines the price of a pizza. b. Graph the relation. c. How would the table change if the cost per topping was \$2? d. How would the graph change if the cost of a basic pizza with no toppings was \$12? 		
I can identify the initial value (constant) for a direct and partial relationship from a graph, table of values, equation and scenario I can identify the rate of change for a situation I can create a linear equation (partial and direct) from a graph by finding the initial value and the rate of change	 6. The graph below shows the cost of renting a banquet hall for a wedding, based on the number of guests. a. Describe the graph. b. Identify the initial value. c. Identify the rate of change. d. Write an equation for the linear relation, using the variable C to represent the cost and g to represent the number of guests. 	Very comfortable Image: Somewhat comfortable	Intro to Linear Relations Part 2 Expression Versus Equation

I can create a linear equation (partial and direct) from a scenario by finding the initial value and the rate of change	7. The charge for renting a tour bus is \$100 for the bus plus \$12 for each passenger. Write an equation to determine the cost, C dollars, to rent the bus, for a trip for <i>p</i> passengers.	عمون محدن أيكر محرب محد	Very comfortable Somewhat comfortable Not at all comfortable	Expression Versus Equation
I can solve problems using the Pythagorean theorem as needed in problems	8. Find the missing side length:	عمن المحد المريد محرف المحد	Very comfortable Somewhat comfortable Not at all comfortable	<u>The Pythagorean</u> <u>Theorem</u>

Solutions to Sample Questions:

1. Simplify: a. (1-7h) + (-7h-1) = -14hb. (5g+3) + (2g+4) = 7g+7c. $4xy - y^2 - 3x^2 + 2xy - x - 3y^2 = -3x^2 + 6xy - 4y^2 - x$

2. Expand and simplify:

 $2x(x^{2}+10x-5) - 3(4x+3) = 2x^{3}+20x^{2}-22x-9$

3. Solve for the unknown:

a.
$$\frac{x}{-6} = 3$$

b. $\frac{x}{45} = \frac{11}{20}$
c. $2y + 7 = 21$
d. $12 - 2x = -7x - 1$
 $x = -\frac{13}{5}$
 $x = -\frac{13}{5}$
 $x = -2.6$

4. A student is paid 23¢ for each newspaper they deliver. Complete the table to show their earnings from delivering 25 to 100 newspapers.

Number of Newspapers	Earnings (\$)				
25	5.75				
50	11.50				
75	17.25				
100	23.00				

Number of toppings	Cost (\$)
0	13.00
1	14.50
2	16.00
3	17.50

5. The following is a table that represents the relationship between cost and number of toppings on a pizza.

a. Describe, in words, how this pizza store determines the price of a pizza. The store charges \$13.00 for a basic pizza with no toppings, and then charges \$1.50 for each topping.

b. Graph the relation.

c. How would the table change if the cost per topping was \$2? The cost per topping is currently \$1.50. If the cost was increased to \$2 per topping, the line would still start at (0,13) but would be steeper than in (b).

d. How would the graph change if the cost of a basic pizza with no toppings was \$12? The cost of a basic pizza is currently \$13. If the basic pizza was to cost \$12, then the line would start lower, at (0,12), and have the same steepness as in (b).

6. The graph below shows the cost of renting a banquet hall for a wedding, based on the number of guests.

- a. Describe the graph. The graph is a straight line. It starts at 300 on the vertical axis, and then rises to the right.
- b. Identify the initial value. Initial value: \$300. This is the cost to rent the hall even with no guests.
- c. Identify the rate of change. Rate of change: \$40/person. (Use clear grid points such as (0,0) and (20,800), and calculate rise over run.)
- d. Write an **equation** for the linear relation, using the variable C to represent the cost and *g* to represent the number of guests. C = 300 + 40*g*.

Number of Guests

7. The charge for renting a tour bus is \$100 for the bus plus \$12 for each passenger. Write an equation to determine the cost, C dollars, to rent the bus, for a trip for *p* passengers. C = 100 + 20p or C = 20p + 100

8. Find the missing side length:

Use the Pythagorean Theorem.

- a. 5 mm (find the length of the hypotenuse the longest side)
- b. 2.9 m (find the length of a leg one of the shorter sides)

9. A can of soda has a diameter of 6 cm and a height of 13 cm. How much soda does it hold?

The can holds 368mL of soda.

 $V = (Area \ of \ base) \times (Height)$ Area of $base = \pi r^2$ Since the diameter is 6cm, the radius is 3cm. The area of the base (a circle) is 28.3cm². The volume of the can is 367.6cm³. One cm³ holds 1 mL of liquid.

10. The diagram shows a closed cone.

- a. Calculate the height.
- b. Find the volume.

- a. The height is 10.9 cm (use the Pythagorean Theorem)
- b. The volume is 285.4cm³.

$V = \frac{1}{3}\pi r^2 h$ (Volume of cone formula, r is radius, h is height)