Self-Assessment for Grade 12 Advanced Functions (MHF4U)

Students who are registered for Grade 12 Advanced Functions (MHF4U) may benefit from a self evaluation and review of the following sample of expectations from Grade 11 Functions (MCR3U) and Grade 12 College Tech Math (MCT4C).

The questions in this self-assessment reflect some of the key ideas learned in prerequisite courses. They do not represent the problem solving approach or the rich experience that students would be exposed to in a classroom. The intention is for students to revisit some key concepts and, if needed, access review materials in an informal environment at a pace that is comfortable for the student.

Concept(s)	Sample Question	How comfortable do you feel with this concept?	Link(s) to explore concept further
I can represent linear and quadratic functions using function notation, given their equations, tables of values, or graphs, and substitute into and evaluate functions	1. Evaluate $f\left(\frac{1}{2}\right)$, given $f(x) = 2x^2 + 3x - 1$.	Very comfortable Image: Somewhat comfortable Image: Somewhat comfortable Image: Somewhat comfortable Image: Somewhat comfortable	Function Notation

I can sketch graphs of y = af(k(x - d)) + c by applying one or more transformations to the graphs of $f(x) = x$, $f(x) = x^2$, $f(x) = \sqrt{x}$, and $f(x) = \frac{1}{x}$	2. Sketch the graph of $h(x) = 2\sqrt{3(x+1)} - 4$.		Very comfortable Somewhat comfortable Not at all comfortable	Representing Functions
I can state the domain and range of the transformed function y = af(k(x - d)) + c where $f(x) = x$, $f(x) = x^2$, $f(x) = \sqrt{x}$, and $f(x) = \frac{1}{x}$	3. State the domain and range of $h(x) = 2\sqrt{3(x+1)} - 4$.		Very comfortable Somewhat comfortable Not at all comfortable	Domain and Range of Two New Functions video

I can determine the algebraic representation of a quadratic function, given the real roots of the corresponding quadratic equation and a point on the function	4. Determine the equation of the quadratic function having zeros at $x=3$ and $x=7$ and passes through the point (2,5).		Very comfortable Somewhat comfortable Not at all comfortable	<u>Families of</u> <u>Parabolas video</u>
I can state the restrictions on the variable values in rational expressions	5. State the restrictions on the following function: $f(x) = \frac{1}{(x+3)(2x-1)}$		Very comfortable Somewhat comfortable Not at all comfortable	Graphical Reciprocal video

I can evaluate numeric expressions containing integer and rational exponents and rational bases	6. Simplify: $\frac{(243x^{-10}y^{15})^{\frac{3}{5}}}{9x^4y^{-5}}$		Very comfortable Somewhat comfortable Not at all comfortable	<u>Exponents</u>
I can solve exponential equations in one variable by determining a common base	7. Solve the equation $4^{-x} = 8^{x+3}$.	juli inter inter	Very comfortable Somewhat comfortable Not at all comfortable	Comparing Exponential Functions video

I can solve problems using given graphs or equations of exponential functions	8. The number of bacteria in a culture is doubling every 3.75 hours. How long will it take for the number of bacteria to increase from 30 000 to 7 680 000?	Very comfortable Somewhat comfortable Not at all comfortable	Modelling with Exponential Functions
I can make connections between sequences and discrete functions, represent sequences using function notation	9. Find an equation, in function notation, to represent the following sequences: a) 3, 5, 7, 9, b) 4, 20, 100, 500, c)	 Very comfortable Somewhat comfortable Not at all comfortable 	Multiple Representations of Sequences

I can determine the values of the sine, cosine, and tangent of angles from 0° to 360°	 12. Determine the exact values of the following in a manner that demonstrates your understanding: a) sin 45° b) cos 120° c) tan 300° 		Very comfortable Somewhat comfortable Not at all comfortable	<u>Related and</u> <u>Coterminal Angles</u> <u>video</u>
I can prove simple trigonometric identities	13. Prove: $\frac{\sin^2 x + \cos^2 x + \cot^2 x}{1 + \tan^2 x} = \cot^2 x$		Very comfortable Somewhat comfortable Not at all comfortable	Trigonometric Identities video

I can represent a sinusoidal function with an equation, given its graph	16. Determine the equation of the function represented by:		Very comfortable Somewhat comfortable Not at all comfortable	Determining the Equation of a Trig Function video
I can solve problems based on applications involving a sinusoidal function by using a given graph or a graph generated with technology from a table of values or from its equation	17. On a certain day, the depth of water at high tide was 6m above sea level. After 6h, the depth of water was 6m below sea level at a depth of 2m. Assume a 12-h cycle with water at sea level at midnight and the tide is coming in. a) Verify that h(t) models this situation, where $h(t) = 6\sin\frac{\pi}{6}(t) + 8$ b) For how long is the water depth higher than 12m in one day?		Very comfortable Somewhat comfortable Not at all comfortable	Application of Sinusoidal functions

Solutions to Sample Questions

1. Evaluate
$$f\left(\frac{1}{2}\right)$$
, given $f(x) = 2x^2 + 3x - 1$.
Solution: $f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) - 1 = 1$

2. Sketch the graph of $h(x) = 2\sqrt{3(x+1)} - 4$

Solution: vertical stretch by factor of 2. Horizontal compression by factor of 3. Slide left 1. Slide down 4.

3. State the domain and range of $h(x) = 2\sqrt{3(x+1)} - 4$.

Solution: $D: \{x | x \ge -1, x \in \mathfrak{R}\}$ $R: \{y | y \ge -4, y \in \mathfrak{R}\}$

4. Determine the equation of the quadratic function having zeros at x=3 and x=7 and passes through the point (2,5).

Solution:

$$f(x) = a(x-3)(x-7)$$

 $5 = a(2-3)(2-7)$
 $a = 1$

Therefore f(x) = (x-3)(x-7)

5. State the restrictions on the following function: $f(x) = \frac{1}{(x+3)(2x-1)}$

Solutions: $x + 3 \neq 0$ $x \neq -3$ $2x + 1 \neq 0$ $2x \neq -1$ $x \neq -\frac{1}{2}$ $x \neq -3, \frac{1}{2}$ 6. Simplify: $\frac{(243x^{-10}y^{15})^{\frac{3}{5}}}{9x^4y^{-5}}$ Solution:

$$\frac{\left(243x^{-10}y^{15}\right)^{\frac{3}{5}}}{9x^4y^{-5}}$$
$$=\frac{\left(\frac{5}{\sqrt{243^3}x^{-6}y^9}\right)}{9x^4y^{-5}}$$
$$=\frac{27x^{-6}y^9}{9x^4y^{-5}}$$
$$=3x^{-10}y^{14}$$
$$=\frac{3y^{14}}{x^{10}}$$

7. Solve the equation $4^{-x} = 8^{x+3}$.

Solution: $4^{-x} = 8^{x+3}$ $(2^2)^{-x} = (2^3)^{x+3}$ $2^{-2x} = 2^{3x+9}$ -2x = 3x+9 -5x = 9 $x = -\frac{9}{5}$

8. The number of bacteria in a culture is doubling every 3.75 hours. How long will it take for the number of bacteria to increase from 30 000 to 7 680 000?

Solution:

 $7680000 = 30000(2)^{\frac{t}{3.75}}$ $25.6 = (2)^{\frac{t}{3.75}}$ $25.6^{3.75} = 2^{t}$ $190941 = 2^{t}$ $2^{17.54} = 2^{t}$ 17.54 = t

Therefore it will take 17.54 hours for this scenario to take place.

9. Find an equation, in function notation, to represent the following sequences:

a) 3, 5, 7, 9, ... b) 4, 20, 100, 500, ...

Solutions:

a) f(x) = 2x + 1b) $f(x) = 4(5)^{x-1}$ c) $f(x) = x^2 + 1$

10. Classify the following as either discrete or continuous. a)

Solutions:

a) Discrete

b) Continuous

11. A student invests \$900 in a term deposit, at 3.5% per year, compounded monthly, for 5 years. How much interest will the student earn?

Solution:

$$= 900 \left(1 + \frac{0.035}{12}\right)^{60} - 900$$
$$= 1071.85 - 900$$
$$= 171.85$$

12. Determine the exact values of the following in a manner that demonstrates your understanding:

a) sin 45° b) cos 120° c) tan 300°

Solution:

	$\frac{\sin^2 x + \cos^2 x + \cot^2 x}{\cos^2 x + \cot^2 x} = \cot^2 x$	
13. Prove:	$\frac{1+\tan^2 x}{1+\tan^2 x} = \cot^2 x$	
=	$\frac{\cos^2 x + \cot^2 x}{+ \tan^2 x}$	R.S. = $\cot^2 x$
$= \frac{1 + \cot^2}{1 + \tan^2}$		
$=\frac{\csc^2 x}{\sec^2 x}$		
$\frac{1}{\sin^2 x}$		
$\frac{1}{\cos^2 x}$		
$=\frac{\cos^2 x}{\sin^2 x}$		
$= cot^2 x$		
=R.S.		
Since L.S.	= R.S. $\frac{\sin^2 x + \cos^2 x + \cot^2 x}{\cos^2 x + \cot^2 x} = \cot^2 x$	
Therefore	$1 + \tan^2 x$	

Describe the key properties of this data with respect to periodic functions.

Solution:

For Average Max Temperature: Maximum: 3.3 Minimum: -33.4Period length:12 months Amplitude: 15.05 Phase Shift: for the cosine graph, there is no shift For the sine graph, the shift is approx 4 months to the right Cycle: 12 months Domain: $D: \{m|m>0, m \in \mathbb{Z}\}$ Range: $D: \{t|-33.4 \le t \le 3.3, t \in \Re\}$ Increasing: 2 < m < 7Decreasing: 1 < m < 2, 7 < m < 12

15. Sketch the graph of $f(x) = -3\sin(2(x-180)) + 1$.

16. Determine the equation of the function represented by:

Solution:

 $f(x) = 2\sin\frac{1}{2}(x+45) + 1$

17. On a certain day, the depth of water at high tide was 6m above sea level. After 6h, the depth of water was 6m below sea level at a depth of 2m. Assume a 12-h cycle with water at sea level at midnight and the tide is coming in.

a) Verify that h(t) models this situation, where $h(t) = 6\sin 30(t) + 8$.

b) For how long is the water depth higher than 12m in one day?

Solutions:

a) Some key details from the problem include:

Maximum: 14

Minimum: 2

Period length:12 hours assists to find the k value.

$$12 = \frac{360}{k}$$
$$k = \frac{360}{12}$$
$$k = 30$$

Amplitude: 6

Vertical translation: 8

Phase Shift: Since at midnight t =0, and the height is given as at sea level, there is not a phase shift to represent

b)

Therefore the time that the height is greater than 12m is 6.4 hours.