COMMUNICATING IN 1s AND 0s: Binary Numbering System

Visit Intel's website at:
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/digital-information.html

Read the section on DIGITAL INFORMATION (Lessons 1-7), and answer the following questions in complete sentences.

1. Define TRANSISTORS.
2. Why do computers use binary code?
3. What do the numbers 0 and 1 represent in binary code?
4. Define VGA and explain how this device displays an image on a computer screen.

5. What is the difference between the binary (base 2) numbering system and the decimal (base 10) numbering system?
6. Using the converter in LESSON 4: Activity 1, convert the following decimal numbers to binary:

20	9	112
99	187	208

7. Why is the converter unable to convert any number greater than 255 into binary?
8. Convert the following binary numbers to decimal:

001	11	10010
101	10101	11111

9. Add the following binary numbers and convert the answer to decimal:

QUESTION	ANSWER	CONVERSION
(a) $1101+110$		
(b) $101+10110$		
(c) $10111+10110$		
(d) $1011011+1110011$		

10. Define ASCII.

11. Using the ASCII converter in LESSON 6: Activity 1, write your name in binary code.
12. What is the difference between an AND condition and an OR condition?
